Extended Abstract

Motivation Recent advances in aligning Large Language Models (LLMs) with human preferences
have highlighted Direct Preference Optimization (DPO) as a leading approach due to its simplicity
and effectiveness. Unlike traditional reinforcement learning techniques, which require carefully
engineered reward signals, DPO relies on pairwise preference labels, making it especially appealing in
settings where explicit reward design is infeasible. While DPO has gained traction in language model
fine-tuning, its applicability to robotics and control domains remains underexplored. This motivates
our investigation into whether DPO can enhance performance in continuous control environments
such as Gymnasium’s Humanoid and Pusher tasks. These benchmarks present realistic robotic
challenges, including high-dimensional action spaces and intricate system dynamics, offering a
meaningful testbed for evaluating DPO’s potential beyond language modeling.

Method We first trained base policies using behavior cloning on expert demonstration datasets for
the Humanoid and Pusher environments from the Minari benchmark suite. Next, we collected both
human-labeled and synthetically-generated preference pairs and fine-tuned the base models using
Direct Preference Optimization. To benchmark our approach, we also trained PPO policies from
scratch and compared their performance against our fine-tuned models. Lastly, we explored Active
Learning to improve data efficiency in training our DPO models.

Implementation We first trained the base behavior cloning policies (7fhgareid and 7usher) on
expert demonstrations from the Minari benchmark. The Humanoid model used a single-layer GRU
with a linear mean head and global log-standard deviation, while Pusher used a two-layer MLP with
256 hidden units and ReLU activations. Both models were trained using the Adam optimizer.

We then used migeneid and wHEre* to roll out trajectories for both human and synthetic labeling. For
the human-labeled dataset, a reviewer selected the preferred trajectory from each pair, while for the
synthetic dataset, the trajectory with the higher environment reward was automatically chosen as

: : : Humanoid Humanoid Pusher
preferred. We then used our labeled trajectories to train 75p6 Humans TDPO Synthetic> TDPO Human> 404

Thpo Sontheric With a single loop of DPO updates on the base policies.

We also trained PPO baseline policies (wimanoid and rPester) for both Humanoid and Pusher using

the Stable-Baselines3 implementation with a two-layer MLP (64 units, tanh activations).

Results DPO improved upon the base policy by up to 16.6% in the Humanoid environment and up
to 4.5% in the Pusher environment. Synthetic DPO performed around 2% better than human-labeled
DPO in both environments. Active Learning experiments showed that the diversity of the trajectories
in the preference pairs in low-data regimes have a huge impact on performance. For Humanoid, the
importance sampling chose a very homogenous dataset and for Pusher, it chose a more diverse
dataset, thus resulting in better performance over random.

Discussion Our experiments showed that DPO fine-tuning can significantly improve policy per-
formance in both Humanoid and Pusher, with synthetic preferences slightly outperforming human-
labeled ones—though the two agreed 95% of the time, reinforcing the validity of human feedback.
Reference-free DPO introduced instability during training, suggesting the need for regularization,
such as a KL divergence term, to improve generalization. Finally, while our active learning setup
did not follow a traditional iterative loop, it still revealed promising directions for improving data
efficiency in low-label regimes, especially in scenarios where preference uncertainty could guide
sampling.

Conclusion Our results demonstrate that Direct Preference Optimization (DPO) is an effective
method for fine-tuning low-level control policies in continuous control environments like Humanoid
and Pusher. Both human-labeled and synthetic preference datasets led to performance improvements
over behavior cloning and PPO baselines, with synthetic preferences performing slightly better. These
findings highlight DPO’s potential for real-world robotics applications, where aligning behavior with
human preferences is critical and reward engineering is often infeasible.

Direct Preference Optimization for Low-Level Actions
in Robotic and Simulation Learning

Kenneth Ma Parker Stewart
Department of Computer Science Department of Computer Science
Stanford University Stanford University
kenma25@stanford.edu parkers@stanford.edu

Thomas Yim
Department of Computer Science
Stanford University
yimt@stanford.edu

Abstract

Direct Preference Optimization (DPO) is a recent technique that fine-tunes poli-
cies directly from human preferences, bypassing the need for explicit reward
functions or separate reward model training. While DPO has shown strong perfor-
mance in language modeling, its effectiveness in low-level control tasks remains
underexplored. In this project, we evaluate DPO in two continuous control environ-
ments—Humanoid and Pusher—by fine-tuning behavior cloning (BC) policies
using both synthetic (reward-based) and human-labeled preference datasets. Our
results show that DPO improves performance over the BC baseline in both tasks,
with synthetic DPO slightly outperforming human-labeled DPO. Additionally, we
investigate active learning strategies to improve data efficiency in preference col-
lection. Overall, our experiments demonstrate that DPO can enhance policy quality
in complex robotic environments and that preference-based tuning is a promising
direction for reward-free learning.

1 Introduction

Direct Preference Optimization (DPO) has emerged as a state-of-the-art method for aligning Large
Language Models (LLMs) with human preferences. Compared to other reinforcement learning
methods, its simple implementation and effectiveness have made it common in modern fine-tuning
workflows. Given the difficulty of defining accurate, dense reward functions encoding the attributes
of a good or bad trajectory, DPO allows for alignment through a direct human-labeled preference
on a pair of examples. However, demonstrations of its effectiveness in robotic or simulation-based
applications are limited.

While defining a good reward function may be difficult, a labeler might still have an intuition for a
better or worse series of actions - thus reducing the dependence on domain expertise to specify an
objective. The goal of our project is to investigate whether DPO can be used to improve performance
on the Gymnasium Humanoid and Pusher tasks by tuning the low-level primitive actions. These
environments are representative of common challenges in robotics, including high-dimensional
control and complex dynamics. The goals for these two tasks are notably different, as the Humanoid
aims to sustain a running movement for as long as possible, whereas the Pusher seeks to complete
its motion as efficiently as possible.

Stanford CS224R 2025 Final Report

2 Related Work

2.1 Proximal Policy Optimization (PPO)

Early policy gradient methods optimized agent behavior by increasing the likelihood of actions that
led to higher rewards. While effective in theory, these methods often suffered from instability due to
large policy updates during training. Proximal Policy Optimization (PPO) addresses this issue by
introducing a clipped objective function that penalizes updates that deviate too far from the previous
policy (Schulman et al.| (2017)). This constraint stabilizes training while maintaining the sample
efficiency of standard policy gradient methods. Due to its simplicity and robustness, PPO has become
the foundation for many downstream reinforcement learning frameworks, particularly those that
involve learning from human feedback. In both Reinforcement Learning from Human Preferences
(RLHP) and Reinforcement Learning from Human Feedback (RLHF), PPO is commonly used to
optimize the agent’s policy with respect to a learned reward model trained from human feedback data.
PPQO’s ability to perform stable updates from sampled experience makes it especially well-suited for
such applications. However, PPO still relies on the existence of a good reward function to guide
learning - which DPO addresses by replacing it with human preference.

2.2 Reinforcement Learning from Human Preferences (RLHP)

In many tasks, particularly those involving complex or subjective goals, defining a dense and accurate
reward function is challenging or infeasible. Reinforcement Learning from Human Preferences
(RLHP) addresses this problem by learning a reward model directly from pairwise human comparisons
between short trajectory segments (Christiano et al.|(2023)). Rather than predefining a numerical
reward function, human evaluators are shown two behaviors and asked to select which one better
aligns with the intended task objective. A neural network is then trained to predict these preferences,
effectively learning a reward function that models human judgments. This learned reward is used to
train the agent’s policy through standard reinforcement learning algorithms, most commonly PPO.
RLHP decouples reward specification from policy optimization, enabling agents to improve behavior
in environments where hand-crafted reward signals are unavailable or misleading. This approach
laid the foundation for modern alignment techniques in large-scale models, such as Reinforcement
Learning from Human Feedback (RLHF), by showing that agents can be successfully guided through
human preference data alone.

2.3 Direct Preference Optimization (DPO)

While RLHP and RLHF demonstrated that agents can be aligned with human preferences through
reward modeling and reinforcement learning, these methods introduced additional complexity through
multi-stage pipelines involving reward model training and policy optimization with PPO. Direct
Preference Optimization (DPO) simplifies this process by eliminating the need for a learned reward
function altogether (Rafailov et al.| (2024)). Instead, DPO directly fine-tunes the policy using a
contrastive objective that operates on pairwise human preferences. Given a prompt and two model
outputs—one preferred and one rejected by a human annotator—DPO optimizes the policy to
assign higher likelihood to the preferred response relative to the rejected one. This is achieved
through a log-ratio loss that compares the likelihoods under the current policy and a frozen reference
policy, encouraging improvement while anchoring the updated model to its original behavior. DPO
retains the benefits of preference-based alignment while reducing computational overhead, increasing
stability, and simplifying implementation. Empirically, DPO has been shown to match or exceed
the performance of RLHF in aligning large language models, making it a compelling alternative for
preference-guided fine-tuning workflows.

2.4 Hierarchical Preference Optimization (HPO)

While DPO enables direct fine-tuning of flat policies from human preferences, it does not address
the challenges of long-horizon tasks where behavior must be decomposed into a sequence of
subgoals. Hierarchical Preference Optimization (HPO) extends the DPO framework to hierarchical
reinforcement learning by introducing a two-level policy architecture (Singh et al,| (2024)). A
high-level policy proposes subgoals, while a low-level policy learns to execute them. Crucially, HPO
incorporates a regularization mechanism based on the low-level policy’s value function, encouraging

the high-level policy to propose subgoals that are not only preferred by humans but also feasible for
the system to achieve. This makes HPO one of the first frameworks to enable preference-driven
learning of both high-level planning and low-level control in a unified, reward-free setting.

2.5 Active Learning for DPO

Fine-tuning with human preferences has demonstrated success in LLMs on downstream tasks,
however these high-quality human preference datasets can be difficult to acquire. Being time-
consuming and sometimes requiring expert labelers, assembing a human preference dataset for DPO
can be prohibitively expensive. However, some training examples are more informative than others
and will have a bigger impact on model performance. Active learning is a semi-supervised learning
method that uses the current model or policy to estimate how informative an unlabeled example (or in
the case of DPO a preference pair) would be to train the model. ActiveDPO is a method that uses the
LLM itself to parameterize a reward model that then finds pairs with the largest absolute difference in
reward to be labeled by a human (Lin et al.|(2025)). So after investigating if DPO would improve
performance on low-level robotic actions, we are curious to see if active learning could improve our
data efficiency and achieve the same performance with fewer examples.

3 Method

_— _
2000 Rollouts A>B DPO Maximum . IR

Likelihood Update

1000 Human Human-labeled

Thase Preference Labels DPO Policy Tppo

Behavior
Cloning
PPO Policy trained
B — —_ .
9000 Rollouts A>B DPO Maximum [RO4SZEE from scratch
Likelihood Update

Expert Demos Base Policy 4500 Reward-Based Synthetic-labeled
Preference Labels DPO Policy

Figure 1: Method Overview.

3.1 Environments

3.1.1 Humanoid

This environment simulates the task of a humanoid figure trying to run forward and considers it
a failure whenever it falls to the ground. The observation shape is (376,) and the action space is
17-dimensional with each value controlling the torque on a joint on the humanoid figure (restricted to
[-0.4, 0.4]).

The reward defined in the environment consists of four components: healthy_reward +
forward_reward — ctrl_cost — contact_cost where healthy_reward is the number of
timesteps that the humanoid is alive, forward_reward measures the forward momentum of the
figure, ctrl_cost is the magnitude of the action forces, and contact_cost is the magnitude of
external contact.

3.1.2 Pusher

This environment simulates a 7-degree-of-freedom robotic arm that aims to push a cylinder into
a target location. The observation shape is (23,) which consists of various joint angles, velocities,
and positions of the arm, target, and cylinder. The action space is 7-dimensional with each value
corresponding to the torque applied to each joint of the robotic arm (restricted to [-2.0, 2.0]).

The reward function is composed of three terms: reward_near+reward_dist —reward_control
where reward_near is the distance from the fingertip of the robot arm to the cylinder, reward_dist
is the distance from the cylinder to the target position, and reward_control is the magnitude of the
torques applied.

3.2 Models
3.2.1 Humanoid

We used a Gated Recurrent Unit (GRU) RNN as the model for the Humanoid environment. This
was chosen because of the high-dimensional and unstable dynamics of the Humanoid task, where
there are more dependencies on past timesteps to help make decisions about the next action. It has
a single-layer GRU with 256 hidden units and outputs a 17-dimensional vector that represents the
mean for a Normal distribution that is used with a learnable log standard deviation shared across
timesteps. This distribution is then used to sample the elements of the next action.

3.2.2 Pusher

For the pusher task, we used a simpler multilayer perceptron (MLP) model since there are less complex
dynamics in the pusher environment and the current observation should be enough information to
condition on for sampling the next action. This had two fully connected layers with 256 hidden units
and ReL U activations. Similarly, this outputs a vector of means as well as a learnable log standard
deviation parameter that we use for the Normal distributions we sample the actions from.

3.3 Behavior Cloning

Our base model is a behavior cloning (BC) policy using trajectories collected from experts in the
Humanoid and Pusher environments in the Minari benchmark datasets.

. . \B

Given a set of sequences containing observations and actions: {(ogz_)T, agl,))} , we train our policy
' S)i=1

mp with negative log likelihood loss.

B T

Ly = —% Z % Zlog o <a£i) | ngl)
i=1" t=1

3.4 Direct Preference Optimization

Direct Preference Optimization can be implemented with or without an explicit reference policy.
We implement a modified version of DPO called Reference-Free DPO. In the original equation. the
function compares the log-likelihood ratio between our current policy 7y and the fixed behavior-
cloned base model on preferred and rejected trajectories.

o (Yw |) Blog mo(y1 |))}

L W;Wr':_Em, ~ loga lo
DPO([ef) (z,Yw,y1)~D |: 5 (ﬁ 8 Wref(yw | {E) 7Tref(yl |.’£)

However, this penalizes model changes that deviate too far from the reference base model that
we trained with behavior cloning. And after visualizing some rollouts from both the Humanoid
and Pusher tasks after Behavior Cloning, we wanted a version of DPO that would allow for more
exploration and thus generalization. This results in Reference-Free DPO (Meng et al.|(2024))) which
directly compares the log-likelihoods of the two trajectories.

Lppo(Tg) = *E(w,yw,yz)ND [log o (B (log mo(yw |) —logma(yi | x)))]

Note that we no longer keep track of m.f so we can simplify our training by no longer maintaining
the frozen base model. It also makes training more computationally efficient as we do not need to
re-evaluate the probabilities of the reference models.

3.5 Proximal Policy Optimization

We separately trained a Proximal Policy Optimization (PPO) policy in each environment to serve as a
relative benchmark. PPO is an actor-critic reinforcement learning algorithm that improves training
stability by preventing large policy updates (Schulman et al.|(2017)). It optimizes a clipped surrogate
objective to constrain policy changes and reduce the risk of performance collapse.

The clipped objective function is:

LOP(g) = B, {min (rt(e)flt, clip(r¢(6),1 — €, 1+ G)At>}
where
olarse)
T o1 (at|st)

is the probability ratio between the new and old policies, and A, is an estimate of the advantage
function. PPO also typically includes a value function loss and an entropy bonus to encourage
exploration:

rt(ﬂ) =

Lppo = ,CCLIP — C1£VF + CQS[TF@]
where £VF is the squared error between the predicted and actual returns, and S[my] is the policy
entropy.

4 Experimental Setup

Model 1 Model 2

Figure 2: Pusher-v5 Trajectory Labeling

4.1 Behavior Cloning

To train the base BC models 7iy2anoid and 7fusher we first collected 1197 demonstrations from the

Humanoid expert dataset with a maximum timestep of 1000 and 5000 trajectories from the Pusher
expert dataset with a maximum timestep of 1000. We then generated sequences of length 32 to
optimize behavior cloning learning.

For the Humanoid environment, we used the single-layer GRU described in section 3.2.1 to learn a
linear mean head as well as a global log-standard deviation parameter. For the Pusher environment,
we replaced the GRU with an MLP model with two fully connected 256-unit layers and ReLU
activations, as described in section 3.2.2.

We trained the Humanoid model using a batch size of 64 and learning rate of 1e—3 for 5 epochs, and
the Pusher model using batch size of 64 and learning rate of 3e—3 for 20 epochs. Both models used
the Adam optimizer to improve training speed and learnability.

4.2 DPO Dataset Collection

We collected two types of datasets for both environments for DPO training: a synthetic dataset
and a human-labeled dataset. In the synthetic dataset, the trajectory with the greater environment
reward was automatically chosen as the preferred one. For the human-labeled dataset, we presented a
reviewer with pairs of side-by-side trajectories (shown in Figure [2)) and asked them to select the one
they preferred. These preferences were recorded by pressing "1’ to select the left trajectory or *2’
to select the right. To prevent positional bias from influencing preference selections during human
labeling, trajectories were randomly assigned to appear on the left or right side of the screen.

In both cases, the trajectory pairs were generated by rolling out 7y, s, in the respective environments.
We used a temperature parameter (0.330 for Humanoid and 1.25¢ for Pusher) to control the standard

deviation of the action distribution of the rollouts. This ensured that the dataset reflected meaningful
variations in policy behavior, such that paired trajectories were similar but not directly identical.

For the human-labeled dataset, we reviewed and labeled 1,000 trajectory pairs. For the synthetic
dataset, we rolled out 4,500 trajectory pairs. We stored the actions and observations for each labeled
trajectory pair locally to be loaded for DPO fine-tuning.

4.3 DPO

To train the human-labeled DPO and synthetically labeled policies for the Humanoid and Pusher
environments, we began by loading the 1,000 human-labeled and the 4,5000 synthetically labeled
preference pairs respectively. We then loaded in the wpc policies for Humanoid and Pusher
environments.

We observed that validation performance began to decline after 10 epochs, likely due to overfitting
on the training data. As a result, we limited training to 10 epochs. This corresponded to a total of
10,000 training timesteps on the human-labeled dataset for both Humanoid and Pusher and 45,000
timesteps on the synthetic dataset for each environment.

We then conducted a coarse-to-fine hyperparameter search: in the coarse stage, we randomly sampled
a range of learning rates and /3 values to identify promising regions of the search space. In the fine
stage, we performed a focused grid search around the best performing configurations to further refine
the policy. This grid search ranged from 3.5 x 1076 to 7.0 x 10~% with a step of 0.5 x 10~° for
learning rate and 0.5 to 0.15 for 3 with a step of 0.05.

44 PPO

We separately trained PPO policies 75 55°M and m$%S* from scratch on the Humanoid-v5 and
Pusher-v5 Gymnasium environments. To do so, we used the Stable-Baselines3 implementation
of PPO (Raffin et al.|(2021))), which uses an MLP policy with two 64-unit hidden layers and tanh
activation functions for both the actor and critic networks.

For both environments, we trained for 10,000,000 total timesteps using 4 parallel actors in a vectorized
environment, with a learning rate of 3e—4, rollout length of 2048, batch size of 64, and 10 epochs.
While training with a larger model for more timesteps would have produced better results, we opted
for a smaller model to ensure that the train times were comparable between the all trained policies.

4.5 Active Learning

We use active learning to choose which unlabeled preference pairs should be labeled by a human
then added to a dataset D. We then evaluate how the model performs when fine-tuned with different
sizes of D. In the random sampling method, we randomly choose the next examples to append to the
dataset. In importance sampling, we take the examples where the absolute difference in reward is
greatest between the pairs. We test this in the low-data regime and outline the approach here:

Algorithm 1 ACTIVE LEARNING

Create a dataset D containing 5 random labeled preference pairs from U/
for dataset_size € {10, 25, 50,100} do
Use an active learning method to select (dataset_size — |D|) new preference pairs from U
Append them to D
Train a new policy Tactive_learning
Evaluate Tractive_learning

At each stage that we train, we use the same hyperparameters that worked best in the previous
experiments where we used all the data. We also are keeping track of the best performance across all
epochs of training.

5 Results
5.1 Quantitative Evaluation

Table 1: Reward Results

Method Humanoid Mean Reward Pusher Mean Reward
Base Model 7643.31 -27.14
Synthetic DPO 8915.89 (+16.6%) -25.92 (+4.5%)
Human-Labeled DPO 8763.83 (+14.7%) -26.36 (+2.9%)
PPO 293.48 (-96.2%) -26.40 (+2.7%)

Our results demonstrate that DPO fine-tuning produces significant improvement in mean reward over
the base models in both environments, while PPO trained using a similar-sized model for a similar
number of timesteps performs far worse for the Humanoid environment. Synthetic labeling performs
around 2% better than human labeling in both cases.

5.2 Qualitative Analysis

After visualizing and investigating sample trajectories after fine-tuning, we noticed Humanoid either
starts from a position where it falls down immediately (reward of 200) or it picks up momentum
and is able to run until we reach the maximum number of timesteps in the environment (reward of
10,000). Thus the Humanoid mean reward can be treated as an upper bound for the success rate (i.e.
the baseline model was succeeding 76% of the time). Once it gets into a state of moving, the form is
pretty much identical to the expert policy and it can keep moving, so DPO fine-tuning appears to be
helping it move from a wider variety of starting positions.

Pusher does not have an equivalent failure case like falling down in the Humanoid task so the
improvement was more subtle. During labeling, we would choose the trajectories with smoother
and faster movement to the center of the goal zone, and that is the improvement we noticed when
visualizing some trajectories after fine-tuning.

5.3 Active Learning

DPO Performance vs Dataset Size DPO Performance vs Dataset Size (Humanoid)

—25.4 {/=¥ importance 10500 % importance
random random

10000

-258
9500

faaf L T 1 g 1
aso0{ 1 1
264
L + I
e a000

268 7500

&
i
-
Mean Retum
H
_‘

Dataset Size Dataset size

(a) Pusher (b) Humanoid

Figure 3: Average reward versus dataset size using Active learning on the Humanoid and Pusher
tasks for dataset sizes of [5, 10, 25, 50, 100].

Although we hypothesized that importance sampling would get a higher mean reward than random
sampling in a lower example regime for both environments, it is interesting to note that importance
sampling outperformed random sampling in Pusher and was worse in Humanoid.

The performance difference at 5 examples can be attributed to different initializations, but there
is significant performance deviations once we hit 100 examples. This is likely due to how similar
trajectories were in the humanoid example. D for Humanoid only consisted of preference pairs where

one ran until the max timesteps and the other fell immediately. Thus we have a very homogenous
fine-tuning dataset which is harming performance. However in Pusher, the failure cases were more
diverse and the action space is a lot simpler so importance sampling performed better.

6 Discussion

We see that DPO fine-tuning can produce significant improvements to an already highly successful
policy in both the Humanoid and Pusher environments. Due to the well-defined reward function in
each environment and a larger synthetically-labeled dataset, synthetic labeling performed slightly
better than human labeling. It is important to note, however, that synthetic and human labeling agreed
95% of the time, indicating that human labeling remains an effective way to select preferences, even
when a well-defined reward function is not present.

With our formulation of Reference-Free DPO, training was notably unstable, with stagnant or
decreasing returns across epochs despite decreasing loss. This suggests that our loss function would
benefit from a KL divergence term, which would provide regularization against overfitting and
improved generalization during training. Future work will investigate the implementation of this term
and whether it will improve training stability.

The PPO models trained from scratch did not perform as well as DPO fine-tuning in both environments.
This is largely due to the fact that we used smaller model sizes and less environment steps than
optimal in order to have comparable train times between experiments. It is likely that, with this
lightweight model, PPO settled into a local optimum for the Humanoid environment, leading to a
stagnation in reward.

Furthermore, our active learning approach was dissimilar to a standard active learning experiment.
Since our reward was defined by the environment, that does not change as we incrementally grow the
dataset. A more realistic active learning experiment would take the mean uncertainty of the policy in
choosing those actions in both preference pairs so it can see examples it might be less confident in.
This then incorporates the model changes with the growing dataset. However, our experiment still
gives us interesting insights on how we might approach training models in low-data regimes.

7 Conclusion

We found that Direct Preference Optimization (DPO) can be used to tune low-level trajectories in
complex continuous control environments such as Humanoid and Pusher, leading to measurable
improvements over behavior cloning baselines. Both human-labeled and synthetically generated
preference datasets were effective in guiding policy improvement, with synthetic preferences yielding
slightly better performance in our experiments.

Our results suggest that DPO is a viable alternative to traditional reinforcement learning approaches
like PPO, particularly in scenarios where reward functions are sparse, hard to define, or misaligned
with desired behavior. Additionally, even in scenarios where reward functions are well defined,
behavior-cloning with DPO fine-tuning tends to outperform PPO. Furthermore, our exploration of
a reference-free variant of DPO enabled greater policy flexibility, although at the cost of increased
training instability. Finally, preliminary experiments with active learning showed promise in reducing
the number of human-labeled examples required for effective fine-tuning, indicating a valuable
direction for future work.

These findings have important implications for real-world robotics, where designing accurate reward
functions is often infeasible. By enabling learning directly from human preferences, DPO offers
a framework for training agents to perform complex tasks in alignment with human intent. This
approach reduces reliance on hand-crafted reward engineering, making it easier to deploy adaptive,
fine-tuned robotic systems in real-world environments where user preferences of behavior are critical.

8 Team Contributions

* Kenneth Ma: Trained the base models for the Humanoid and Pusher tasks using Behavior
Cloning. Setup and trained both tasks with PPO. Labeled preference pairs for DPO training
on both Humanoid and Pusher, and fine-tuned Humanoid DPO model.

* Parker Stewart: Created tool allowing us to label preference pairs for DPO training and
labeled many examples. Worked on pipeline for DPO training and fine-tuned Pusher DPO
model.

* Thomas Yim: Set up pipeline for DPO training. Conducted active learning and dataset size
experiments. Labeled preference pairs for DPO training on both Humanoid and Pusher.
Generated the reward-based preferences pairs

Changes from Proposal We have stayed close to the original assignments in the proposal.

References

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2023.
Deep reinforcement learning from human preferences. arXiv:1706.03741 [stat ML] https:
//arxiv.org/abs/1706.03741

Xiaoqgiang Lin, Arun Verma, Zhongxiang Dai, Daniela Rus, See-Kiong Ng, and Bryan Kian Hsiang
Low. 2025. ActiveDPO: Active Direct Preference Optimization for Sample-Efficient Alignment.
arXiv preprint arXiv:2505.19241 (May 2025). https://arxiv.org/abs/2505.19241 Ac-
cepted to ACL 2025.

Yu Meng, Mengzhou Xia, and Danqgi Chen. 2024. SimPO: Simple Preference Optimization with a
Reference-Free Reward. arXiv:2405.14734 [cs.CL] https://arxiv.org/abs/2405.14734

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. 2024. Direct Preference Optimization: Your Language Model is Secretly a Reward Model.
arXiv:2305.18290 [cs.L.G] https://arxiv.org/abs/2305.18290

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research 22,268 (2021), 1-8. http://jmlr.org/papers/v22/20-1364,
html

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG] https://arxiv.org/abs/1707.
06347

Utsav Singh, Souradip Chakraborty, Wesley A. Suttle, Brian M. Sadler, Anit Kumar Sahu, Mubarak
Shah, Vinay P. Namboodiri, and Amrit Singh Bedi. 2024. Hierarchical Preference Optimization:
Learning to achieve goals via feasible subgoals prediction. arXiv:2411.00361 [cs.LG] https!
//arxiv.org/abs/2411.00361

https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2505.19241
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2305.18290
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2411.00361
https://arxiv.org/abs/2411.00361

	Introduction
	Related Work
	Proximal Policy Optimization (PPO)
	Reinforcement Learning from Human Preferences (RLHP)
	Direct Preference Optimization (DPO)
	Hierarchical Preference Optimization (HPO)
	Active Learning for DPO

	Method
	Environments
	Humanoid
	Pusher

	Models
	Humanoid
	Pusher

	Behavior Cloning
	Direct Preference Optimization
	Proximal Policy Optimization

	Experimental Setup
	Behavior Cloning
	DPO Dataset Collection
	DPO
	PPO
	Active Learning

	Results
	Quantitative Evaluation
	Qualitative Analysis
	Active Learning

	Discussion
	Conclusion
	Team Contributions

